Reinforcement Learning with Monte Carlo and Tabulation Methods

I was reading another blog post about reinforcement learning using Monte Carlo and tabulation methods that provided an example of the technique using Blackjack. I decided to implement my own method using Tic-Tac-Toe as an example. The basic idea is that you generate a random state of a game, and you generate a random action based on that state. Then you play the rest of the game through until the end and record the outcome. Then you should be able to store the state, action, and outcome as a key in a dictionary that refers to a count. Each time that state-action-outcome occurs again, you update the count by one. Over time, your dictionary will encode information about the relative strengths of different actions for a given state.

Continue reading